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Abstract

This research effort examines the reduction of error in inertial navigation aided

by vision. This is part of an effort focused on navigation in a GPS denied environment.

The navigation concept examined here consists of two main steps. First, extract the

position of a tracked ground object using vision and geo-locate it in 3 dimensional

navigation frame. In this first step multiple positions of the UAV are assumed known;

think of a synthetic aperture. The only information about the tracked ground object-

s/features is the unit vector that points to the objects from the center of the camera.

Two such vectors give enough information to calculate the best estimate of the po-

sition of the tracked object in a 3 dimensional navigation frame using the method

of least square. Concerning the second step: checking observability for the 3-D case

shows that at least 2 objects need to be tracked. In practice one needs to track more

than two objects to wash out the measurement error and obtain good results.

In the first step the known position of the UAV is used to first geo-locate the tracked

ground object while relaying on the short time span accuracy of the INS. In the second

step, the information on the position of multiple tracked objects is used as points of

origin of vectors that point to the UAV, instead of using multiple positions of the air

vehicle, as was the done in step one. The least squares method is applied to determine

the position of the UAV. As explained above, initially using known positions, of the

air vehicle, the positions of the tracked ground objects are calculated, and then using

those calculated positions the position of the UAV is determined. These two steps

feed each other.

The performance of the Kalman filter and UAV position estimation algorithms strongly

depend on the quality of the measurements provided by the INS. The INS measure-
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ments were modeled, and we investigated simplified flying scenarios to validate our

algorithms/methodology.

Some effort was expanded on investigating the possibility of using a camera and

GPS position measurements,without using INS. Directly using the Doppler readings

provided by GPS might be advantageous.

The investigated scenarios showed that bearings measurements of ground objects

taken over time are useful for enhancing the INS navigation solution. When multiple

objects are tracked, the algorithm is applied to each pair of objects and the results

were averaged. This method gave us better results and at the same time is somewhat

more practical than extending the algorithm to accommodate an arbitrary number of

tracked objects.
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The Navigation Potential of Ground Feature

Tracking

I. Introduction

1.1 Background

Navigation has a long history. Currently, commercial nav-aids like VOR (VHF

Omni-directional Radio Range), NDB (Non-directional beacon), DME (Distance mea-

suring equipment) work well and GPS (Global positioning system) provides very pre-

cise positioning, and it is widely used. In this thesis the use of vision for navigation

is investigated for use in areas of conflict with perhaps reduced GPS availability, in

order to guarantee more robust navigation.

Consider a target located thousands of miles away from the nearest safe base

in a partner country; and assume the enemy is surrounded by neighboring countries

which are not willing to provide logistic support to our operation. An UAV would

be used in such an operation because not using personnel will save lives. The UAV

should be able to take part in a global operation. In addition, a small UAV will be

cheaper than a conventional jet fighter or bomber, and there is no need to use an Air

Force installation close to the area of conflict. The operation can be started sooner

and will cost less.

How can this be accomplished? The UAV can be launched safely from one of

our Air Bases, and can fly on its route using conventional nav-aids without having

any problems until approaching the area of conflict. In the battle zone it needs to

be prepared to lose some nav-aid options. Autonomous vision-aided INS navigation

will be helpful here. This is a passive navigation method that cannot be jammed by

electromagnetic interference. Also, an IR camera could be used since it is less affected

by humidity in the air or cloud. In the battle space, say an area of a hundred square

miles, navigation will be accomplished by tracking ground features using an airborne
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camera.

Furthermore, stationary ground objects, like trees, big rocks, buildings or other

objects will be used to map the battle-zone. Our hunter UAV is a moving object, and

other moving objects are possibly friends or enemies. The object tracking algorithm

will calculate the relative position between stationary objects, the UAV and the target,

and possibly other moving objects. Kalman filtering will be used.

1.2 Problem Statement for Level Flight and Maneuvers

During level flight the ground object should be continuously tracked. Using the

known speed and altitude of the UAV the position of the tracked object in the next

image can be predicted. This will narrow the search for locating the object/feature

in the next frame. To not lose the update information, it’s necessary to track four

or five ground objects. It all depends on how good the real-time feature extraction

algorithm is.

We note that tracked objects in the scene should not be arranged on one line.

It’s good to have the tracked objects spread out in the scene in every frame. The

overlap of the objects’ pattern in the scene will provide continuous update information

and will be a good aid to INS.

Unfortunately flights, especially military flights, will not be only level flights.

Military aircraft and even UAVs need to maneuver. Let’s take a barrel roll as an

example. A down looking camera will lose sight of the ground objects for a short time

during upside-down flight. One should then map the last group of visible ground ob-

jects on a digital map of the 3 dimensional world around the UAV, and then calculate

the predicted position of those objects until the time of recapturing of at least one

ground object. Hence, to not lose the tracked objects a camera which has a wide

angle lens such that it can capture a wide field of view is required.

In the case of a total loss of ground objects, forward propagation of the UAV’s

position might not be reliable. If we have a good GPS signal or update from other

2



sensors, sensor fusion will be helpful here to aid the INS. Especially for this case,

mapping of the tracked objects in the 3D world and saving them in memory is very

important; the combat zone could be an area less than 100 square miles and informa-

tion about many ground objects could be stored in memory. Good 3−D maps of that

area can be extracted and stored in memory like pieces of a huge puzzle. Flying a few

times over the same area may help to fill out some gaps. It might not be imperative

to fill all gaps in the battle space. We will need navigation information to get the job

done and finally to exit the battle zone and return to base. Producing that kind of 3D

map by filling gaps depends on really good feature tracking and good matching/image

correspondence algorithms.

1.3 Scope

There is increased use of UAVs today. What requires increased numbers of

sorties of UAVs in the battlefield? Increasing sensitivity of the public to lost personnel

force leadership to look for methods to save life of troops. Using unmanned systems

reduces risk to the crew.

There is always a need to reduce the cost. The cost of production and also the cost

of maintenance. If you don’t need to have a pilot in the cockpit, that means you

will save weight and also here will be no need for systems designed to save his life.

Here we can include input-output devices that help the pilot to communicate with

the aircraft, and to control it. Many subsystems are needed for a human on board.

Using an UAV will save weight and expenses related to those devices. Affordable war

machines are always attractive to the leadership.

We need to add that pilot emergencies are not expected in UAVs. Are they eligible

to replace all jet fighters or bombers? For now there is still need to use conventional

weapon systems, however a lot of studies are done to improve the capabilities of

unmanned systems in the air, on the ground and at sea.

What about requirement for invisibility in the battlefield? There are many different

sensors available for navigation. Radar, ladar, laser altemeter etc... We need to be

3



able to use all options, even that we will not use all of them at the same time or at

the same aircraft. Emitting sensors could be defined by the enemy, so that requires

research to use passive sensors for navigation for some cases.

In this thesis the use of vision for navigation is investigated for use in areas of conflict

with perhaps reduced GPS availability, in order to guarantee more robust navigation.

Vision aid is passive and could be fully autonomous. Does not need help from satellite

or other sources. It is not electronically jammable. Can replace some of other INS

aid sensors.

1.4 Approach/Methodology

To document the research conducted in this thesis, each chapter will be briefly

summarized. The first chapter some background information abut navigation, prob-

lem statement from hight point of view, brief information about Systems Engineering

and Management and its principles, and finally summary of the whole document.

The second chapter includes background information about INS and different types

of frames used in navigation. Chapter three examines mathematical theory used in

this thesis. This chapter first investigates 2-D flight scenario and related mathematics;

then extends the theory and mathematics for 3-D flight scenario. Methods to go be-

tween frames are explained and applied for investigated flight scenario in this chapter.

Time dependent state space representation needed for Kalman filtering was obtained

in this section. Chapter four consists of simulations, results, and briefly information

about assumptions for applied scenarios. Chapter five consists of conclusion of the

job done here and recommendations for next iterations.
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II. Literature Review

2.1 Inertial Navigation

The inertial navigation systems depend on mechanic laws derived by Newton.

An inertial navigation system consist of a computer and a platform or module con-

taining accelerometers and gyroscopes. Inclinometers are also sometimes used. The

INS is initially provided with its position and velocity from another source (a human

operator, a GPS receiver, etc.), and thereafter computes its own updated position and

velocity by integrating information received from the inertial sensors. The advantage

of an INS is that it requires no external information in order to determine its position,

orientation, or velocity once it has been initialized.

An INS can autonomously detect a change in its geographic position (a move

East or North, for example), a change in its velocity (speed and direction of move-

ment), and a change in its orientation (rotation about an axis). It does this by

measuring the linear and angular accelerations of the UAV. Since it requires no exter-

nal reference (after initialization), it is immune to jamming and deception. Inertial-

navigation systems are used in ground vehicles, aircraft, ships, submarines, and guided

missiles.

Gyroscopes measure the angular velocity of the system in the inertial reference

frame. By using the original orientation of the aircraft in the inertial reference frame

as the initial condition and integrating the angular velocity, the system’s current ori-

entation is obtained at all times. This can be thought of as the ability of a blindfolded

passenger in a car to feel the car turn left and right or tilt up and down as the car

ascends or descends hills. Based on this information alone, he knows in what direction

the car is leading but does not know how fast or slow it is moving, or whether it is

sliding sideways.

Accelerometers measure the linear acceleration of the system in the inertial

reference frame, but in directions that can only be measured relative to the moving

system (since the accelerometers are affixed to the vehicle and rotate with the vehicle,

but are not aware of their own orientation). This can be thought of as the ability of a
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blindfolded passenger in a car to feel himself pressed back into his seat as the vehicle

accelerates forward or pulled forward as it slows down; and feel himself pressed down

into his seat as the vehicle speeds up a hill or rise up out of his seat as the car passes

over the crest of a hill and begins to descend. Based on this information alone, he

knows how the vehicle is moving relative to itself, that is, whether it is going forward,

backward, left, right, up (toward the car’s ceiling), or down (toward the car’s floor)

measured relative to the car, but not the direction relative to Earth, since he did not

know what direction the car was facing relative to Earth when he felt the accelera-

tions.

All inertial navigation systems suffer from “integration drift”: small errors in

the measurement of acceleration and angular velocity are integrated into progressively

larger errors in velocity, which is compounded into still greater errors in position.

Since the new position is calculated solely from the previous position, these errors

are cumulative, increasing at a rate roughly proportional or, on even higher route to

the time since the initial position was input. Therefore the INS position fix must be

periodically corrected by input from some other type of navigation system.
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2.2 Coordinate Systems

2.2.1 The Inertial reference frame. The location of the origin may be any

reference point that is completely unaccelerated (inertial), and the orientation of the

axes is usually irrelevant in most problems so long as they too are fixed with respect

to inertial space. The origin of the inertial reference frame I is at the center of the

Earth. The geometry is illustrated in Figure2.1

Figure 2.1: The Inertial reference frame
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2.2.2 The Earth-Centered reference frame. As its name suggests this coor-

dinate system has its origin at the center of the Earth. Its axes may be arbitrarily

selected with respect to fixed positions on the surface of the Earth.This ECEF co-

ordinate system obviously rotates with the Earth. The geometry is illustrated in

Figure2.2

Figure 2.2: Earth-Centered Earth-Fixed reference frame ECEF
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2.2.3 The Earth-fixed reference frame. This coordinate system has its origin

fixed to an arbitrary point on the surface of the Earth. xE points due North, yE points

due East, and zE points toward the center of the Earth.

Figure 2.3: Earth-fixed reference frame

2.2.4 The Body-fixed frame. This coordinate system has its origin fixed to

any arbitrary point that may be free to move relative to the Earth. For example, the

origin may be fixed to the center of gravity (CG) of an aircraft and move with the
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CG. yN points due North, xE points due East, and zD points toward the center of the

Earth.

Figure 2.4: Body-fixed navigation reference frame

2.2.5 Body-fixed reference frames. “Body-fixed” means the origin and axes

of the coordinate system are fixed with respect to the (nominal) geometry of the

aircraft. This must be distinguished from body-carried systems in which the origin is

fixed with respect to the body but the axes are free to rotate relative to it. In flight
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dynamics reference frames are used which have their origin at the aircraft’s CG and

the x axis is aligned with the velocity vector and one then refers to the “wind axes”.

Figure 2.5: Body-fixed reference frame shown on US Navy F − 14 Tomcat
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III. Methodology

3.1 Introduction

In this chapter we develop methods for visual INS aiding using optical measure-

ments of tracked ground objects/ground features with known or unknown position.

INS aiding using bearing measurements of stationary ground features is investigated.

The objective is to quantify the navigation information obtained by tracking ground

features over time. The answer is provided by an analysis of the attendant observabil-

ity problem. The degree of INS aiding action is determined by the degree of observ-

ability provided by the measurement arrangement. The latter is strongly influenced

by the nature of the available measurements - in our case, bearing measurements

of stationary ground objects - the trajectory of the aircraft, and the length of the

measurement interval. It is shown that when one known ground object is tracked,

the observability Grammian is rank deficient and thus full INS aiding action is not

available. However, if barometer altitude is available and an additional vertical gyro-

scope is used to provide an independent measurement of the aircraft’s pitch angle, a

data driven estimate of the complete navigation state can be obtained. If two ground

features are simultaneously tracked the observability Grammian is full rank and all

the components of the navigation state vector are positively impacted by the external

measurements.

3.2 2-D Case

3.2.1 Introduction. Inertial Navigation System aiding using optical mea-

surements [1–6] is appealing because passive bearing - only measurements preserve

the autonomy of the integrated navigation system. In this thesis an attempt is made

to gain an understanding of the nature of the navigation information provided by

bearing - only measurements taken over time, of stationary ground objects, whose

position is not necessarily known.
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In this thesis the crucial issue of processing the images provided by a down look-

ing camera for the autonomous - without human intervention - measurement of optic

flow, or, alternatively, image correspondence for feature tracking, or, mosaicing, [7,8]

is not addressed. We do however note that these tasks are nevertheless somewhat

easier than full blown Autonomous Target Recognition (ATR) and/or machine per-

ception. In this article it is assumed that autonomous feature detection and tracking

is possible so that bearings measurement records of stationary ground objects are

available. We exclusively focus on gauging the navigation potential of bearings - only

measurements of stationary ground objects taken over time.

In this thesis we refer to purely deterministic, i.e. noise free, corrupted bearing

measurements, where many measurements would naturally help wash out the noise.

Even so, both the number of bearing measurements taken and the number of simul-

taneously tracked ground objects is of interest. Obviously, increasing the number of

tracked features should increase the navigation information content. Thus, our main

thrust is focused on the quantification and measurement of the degree of observability

of the optical bearings-only measurement arrangement. In this respect, we follow in

the footsteps of [9] and [10]. The absolute minimal number of tracked features such

that additional features do not further increase the degree of observability, is estab-

lished.

Concerning observability: The measurement equations are time-dependent and there-

fore one cannot ascertain observability from an observability matrix. Hence, the infor-

mation content of passive optical bearings-only measurements will be gauged by deriv-

ing the observability Grammian of the bearing-only measurement arrangement. It is

however very important to first non-dimensionalize the navigation state, the bearings

measurement geometry, and also the time variable, so that the derived observabil-

ity Grammian is non-dimensional.This guarantees that the observability Grammian

correctly reflects the geometry of the measurement arrangement, so that meaningful
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conclusions can be drawn. The rank, or the condition number of the observability

Grammian is established - it is the ultimate purveyor of the navigation potential of

vision.

A word of caution concerning information fusion is in order. It is often much too

easy to set up a Kalman Filter (KF) for fusing, e.g., optical and inertial measurements

- in which case one then refers to INS aiding using bearings-only measurements [11].

The point is that a KF output will always be available. Even in the extreme case of

an optical measurement arrangement where observability is non-existent, a KF can

be constructed and a valid navigation state estimate output will be available, except

that no aiding action is actually taking place: the produced navigation state estimate

then exclusively hinges on prior information only - in this case, inertial measurements,

whereas the optical measurements don’t at all come into play.

In light of the above discussion, the real question is whether there is aiding ac-

tion so that the optical measurements are actually brought to bear on a KF provided

navigation state estimate, thus yielding enhanced estimation performance relative to

a stand alone INS. One would like to determine how strong the aiding action is and

into precisely which components of the navigation state the aiding action trickles

down into. The answer is provided by our deterministic observability analysis:

A KF will help enhance the accuracy of the complete navigation state if, and

only if, the system is observable, that is, the observability Grammian is full rank.

We’ll also address the case of partial observability.

Strictly speaking, the herein outlined analysis should be carried out whenever

the use of a KF is contemplated, to get a better understanding of the data fusion

process. For example, it is known that when during cruise, GPS position measure-
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ments are used to aid an INS, no aiding action will be realized in the critical aircraft

heading navigation state variable, unless the aircraft is performing high-g horizontal

turns. And in the extreme case of an object in free fall - for example, a bomb - it can

be shown that GPS position measurements will not enhance the estimate of any of

the object’s Euler angles.

Naturally, the use of bearings-only measurements can yield information on an-

gular components only of an air vehicle’s navigation state. We refer to the measure-

ment of the aircraft “drift” angles, namely, the angles included between the ground

referenced velocity vector and the aircraft body axes. A dramatic improvement in

the navigation state information can be obtained if additional passive measurements

become available. A case in point is baro-altitude measurement. The latter is also

used in inertial navigation - to the extent that high precision inertial navigation is

not possible without passive baro altitude, or, GPS - provided, altitude information.

Indeed, the combined use of optical measurements and baro-altitude for navigation

has a long history, from the days when navigators where seated in the glazed nose

of aircraft and would optically track a ground feature using a driftmeter, or, on the

continent, a cinemoderivometer.

We are also interested in the use of additional passive measurements and side

information. We refer to known landmarks, digital terrain elevation data, LADAR

provided range measurements, GPS provided position measurements, and, finally, the

mechanization of an autonomous navigation system akin to an INS which however ex-

clusively and continuously uses bearing measurements of ground features - one would

then refer to an Optical Navigation System (ONS).

By augmenting the navigation state with the coordinates of the tracked ground

features/objects, Simultaneous Location and Mapping (SLAM) is achieved in a unified
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framework. Furthermore, the analysis can be extended to include the tracking of

moving objects, whether on the ground, or in the air. Under standard kinematic

assumptions, the motion of own ship relative to said tracked objects can be measured:

think of obstacle avoidance or “see and avoid” guidance.

3.2.2 Modeling. We are cognizant of the fact that the degree of INS aiding

provided by bearing measurements might strongly depend on the trajectory flown.

For example, this certainly is the case when GPS position measurements are used for

INS aiding. All this notwithstanding, in this study we confine our attention to the

most basic two-dimensional scenario where the aircraft is flying wings level at constant

altitude in the vertical plane. The two-dimensional scenario under consideration is

illustrated in Figure3.1.

In 2-D, the navigation state is

X = (x, z, vx, vz, θ)

and the “disturbance”

d = (δfx, δfz, δω)

consists of the biases δfx and δfz of the accelerometers and the bias δω of the rate

gyro. The error equations are

δẊ = AδX + Γd (3.1)

We assume the Earth is flat and non-rotating - this, in view of the short duration and

the low speed of the Micro Air Vehicle (MAV) under consideration. Consequently, in

level flight the dynamics are
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Figure 3.1: Flight in the vertical plane.
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A =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 g

0 0 0 0 0

0 0 0 0 0




, Γ =




0 0 0

0 0 0

1 0 0

0 1 0

0 0 1




(3.2)

The tracked ground object is located at P = (xp, zp). From the 2-D geometry in

Fig3.1 we derive the measurement equation:

xp − x

z − zp

= cot(θ + ξ) (3.3)

and thus the measurement

tan(ξ) =
z − zp − (xp − x) tan θ

xp − x + (z − zp) tan θ
=

f

xf

(3.4)

or

xf =
xp − x + (z − zp) tan θ

z − zp − (xp − x) tan θ
f (3.5)

Now, the INS output xc = x + δx, zc = z + δz, θc = θ + δθ where x, z and

θ are the true navigation states. In order to linearize the measurement equation, we

need the information x−p , z−p , that is, prior information on the position of the tracked

ground feature.

Let

x−p = xp + δxp (3.6)

z−p = zp + δzp (3.7)
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The true augmented state

x = xc − δx (3.8)

z = zc − δz (3.9)

vx = vxc − δvx (3.10)

vz = vzc − δvz (3.11)

θ = θc − δθ (3.12)

xp = x−p − δxp (3.13)

zp = z−p − δzp (3.14)

where δx, δz, δvx, δvz, δθ, δxp, δzp are the augmented state’s estimation errors.

During level flight, and using the small angle approximation, the measurement equa-

tion is

xf

f
=

xp − x + (z − zp)θ

z − zp − (xp − x)θ
(3.15)

and the measurement, expressed as a function of the state perturbations δx, δz, δθ, δxp, δzp

is:
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xf

f
=

x−p − δxp − xc + δx + (zc − δz − z−p + δzp) · (θc − δθ)

zc − δz − z−p + δzp − (x−p − δxp − xc + δx) · (θc − δθ)
(3.16)

=
x−p −xc+(zc−z−p )θc+δx−θcδz+(z−p −zc)δθ−δxp+θcδzp

zc−z−p +(xc−x−p )θc−θcδx−δz+(x−p −xc)δθ+θcδxp+δzp

=
x−p −xc+(zc−z−p )θc

zc−z−p +(xc−x−p )θc
+ 1

[zc−z−p +(xc−x−p )θc]
2 · { [zc − z−p + (xc − x−p )θc

+(x−p − xc + (zc − z−p )θc)θc]δx

+
[−(zc − z−p + (xc − x−p )θc)θc + x−p − xc + (zc − z−p )θc

]
δz

+
[
(zc − z−p + (xc − x−p )θc)(z

−
p − zc) + (x−p − xc + (zc − z−p )θc)(xc − x−p )

]
δθ

+
[
z−p − zc + (x−p − xc)θc + (xc − x−p + (z−p − zc)θc)θc

]
δxp

+
[
(zc − z−p + (xc − x−p )θc)θc + xc − x−p + (z−p − zc)θc

]
δzp }

=
x−p −xc+(zc−z−p )θc

zc−z−p +(xc−x−p )θc
+ 1

[zc−z−p +(xc−x−p )θc]
2 · { [

zc − z−p + (zc − z−p )θ2
c

]
δx

+
[
x−p − xc + (x−p − xc)θ

2
c

]
δz−[

(x−p − xc)
2 + (z−p − zc)

2
]
δθ+

[
z−p − zc + (z−p − zc)θ

2
c

]
δxp
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+
[
xc − x−p + (xc − x−p )θ2

c

]
δzp }

=
x−p −xc+(zc−z−p )θc

zc−z−p +(xc−x−p )θc
+ 1

[zc−z−p +(xc−x−p )θc]
2 ·

[
(1 + θ2

c )(zc − z−p )δx + (1 + θ2
c )(x

−
p − xc)δz

− [
(x−p − xc)

2 + (z−p − zc)
2
]
δθ + (1 + θ2

c )(z
−
p − zc)δxp + (1 + θ2

c )(xc − x−p )δzp ]

=
x−p −xc+(zc−z−p )θc

zc−z−p +(xc−x−p )θc
+ 1+θ2

c

[zc−z−p +(xc−x−p )θc]
2 · { (zc − z−p )δx + (x−p − xc)δz

−[(x−p − xc)
2 + (z−p − zc)

2]δθ + (z−p − zc)δxp + (xc − x−p )δzp }

We use the fact that the navigation state errors are small and therefore the for-

mula 1
1+x

≈ 1+x is repeatedly used in derivations above to simplify the measurement

equation and to linearize it.

Hence, for level flight the linearized measurement equation is

xf

f −
x−p −xc+(zc−z−p )θc

zc−z−p +(xc−x−p )θc
= 1

[zc−z−p +(xc−x−p )θc]
2 · { (zc − z−p )δx

+(x−p −xc)δz− [(x−p −xc)
2 +(z−p −zc)

2]δθ+(z−p −zc)δxp +(xc−x−p )δzp } (5)
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3.2.3 Special Cases. If the position (xp, zp) of the tracked ground object is

known, the state is the navigation state x, z, vx, vz, θ and the linearized measurement

equation is

xf

f −
xp−xc+(zc−zp)θc

zc−zp+(xc−xp)θc
=

1
[zc−zp+(xc−xp)θc]2

· { (zc − zp)δx + (xp − xc)δz

+[(xp − xc)
2 + (zp − zc)

2]δθ }

If only the elevation zp of the tracked ground object is known, the augmented state

is x, z, vx, vz, θ, xp. Without loss of generality we set zp = 0, and the linearized mea-

surement equation is:

xf

f −
x−p −xc+zcθc

zc+(xc−x−p )θc
=

1
[zc+(xc−x−p )θc]2

· { zcδx + (x−p − xc)δz

+[(x−p − xc)
2 + z2

c ]δθ − zcδxp }

Remark : For the purpose of analysis, on the right hand side of the measurement

equation one can replace xc by the true - that is, the nominal - state component x ,

zc by the true - that is, the nominal - state component z, and θc by θ ≡ 0.

Hence, if the position of the tracked ground object is known, and, in addition, without

loss of generality we set zp = 0 , then the linearized measurement equation is

xf

f
− xp − xc + zcθc

zc + (xc − xp)θc

=
1

z2
· {zδx + (xp − x)δz − [(xp − x)2 + z2]δθ

}
(3.17)
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If only the elevation zp of the tracked ground object is known, and, as before without

loss of generality, we set zp = 0, then the state error is δx, δz, δvx, δvz, δθ, δxp, and the

linearized measurement equation is

xf

f
− x−p − xc + zθc

zc + (x− xp)θc

=
1

z2
· {zδx + (x−p − x)δz − [(x−p − x)2 + z2]δθ − zδxp

}
(3.18)

If the position of the ground object is not known, the navigation state error is

δx, δz, δvx, δvz, δθ, δxp, δzp and the linearized measurement equation - see, e.g., eq.(5)

- is

xf

f −
x−p −xc+(z−z−p )θc

z−z−p +(x−x−p )θc
= 1

(z−z−p )2
· { (z − z−p )δx + (x−p − x)δz

−[(x−p − x)2 + (z − z−p )2]δθ + (z − z−p )δxp + (x− x−p )δzp }

Furthermore, for the purpose of analysis, on the right hand side of the last two

equations we can also replace x−p and z−p by the true position (xp, zp) of the tracked

object. Hence the respective measurement equations are

xf

f
− x−p − xc + zθc

zc + (x− xp)θc

=
1

z2
· {zδx + (xp − x)δz − [(xp − x)2 + z2]δθ − zδxp

}
(3.19)

and
xf

f −
x−p −xc+(z−z−p )θc

z−z−p +(x−x−p )θc
= 1

(z−zp)2
· { (z − zp)δx + (xp − x)δz

−[(xp − x)2 + (z − zp)
2]δθ + (z − zp)δxp + (x− xp)δzp }

Furthermore, without loss of generality, in the last equation we set zp = 0:
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xf

f −
x−p −xc+(z−z−p )θc

z−z−p +(x−x−p )θc
= 1

z2 · { zδx + (xp − x)δz

−[(xp − x)2 + z2]δθ + zδxp + (x− xp)δzp }

During the initial geo-location phase where one is exclusively interested in the ground

object’s position, one takes the INS calculated aircraft navigation state variables x, z, θ

at face value and the linearized measurement equation is used to estimate δxp, δzp :

xf

f
− x−p − x + (z − z−p )θ

z − z−p + (x− x−p )θ
=

1

(z − z−p )2
· [(z−p − z)δxp + (x− x−p )δzp

]
(3.20)

This equation would be used if a recursive geo - location algorithm is applied. Note

however that if one is exclusively interested in geo - locating the ground object, a

batch algorithm might be preferable. Finally, one would use Equation (3.19) and

iterate

x−p := x−p − δxp (3.21)

z−p := z−p − δzp (3.22)

In practice, the first guesses of x−p and z−p are generated as follows. We have the INS

provided “prior” information on the navigation state x, z, θ. Bearing measurements of

the ground feature P are taken over time. One can use the first two bearing measure-

ments to obtain the “prior” x−p and z−p information. Hence, initially one is exclusively

concerned with the geo - location of the feature on the ground. To this end one uses

Equation (3.3) and upon recording two measurements one obtains a set of two linear

equations in the unknowns x−p and z−p :

xp + cot(θc1 + ξm1)zp = xc1 + zc1 cot(θc1 + ξm1) (3.23)
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xp + cot(θc2 + ξm2)zp = xc2 + zc2 cot(θc2 + ξm2) (3.24)

whereupon


 x−p

z−p


 =

1
cot(θc2+ξm2)−cot(θc1+ξm1) ·


cot(θc2 + ξm2) − cot(θc1 + ξm1)

−1 1




·

xc1 + zc1 cot(θc1 + ξm1)

xc2 + zc2 cot(θc2 + ξm2)




Obviously, one could use more than two bearing measurements and obtain an

overdetermined linear system in x−p and z−p , but then one performs geo-location only

and completely forgoes the task of INS aiding. Since at time instants k = 1 and

k = 2 the INS is not aided, the original prior information on the navigation state eror

δx−, δz−, δθ− must be propagated forward to time step k = 2. From this point on,

the updated prior information δx−, δz−, δθ− and the prior information x−p and z−p

are employed to start the Kalman filter such that the aircraft navigation state and

the ground object’s position are simultaneously updated using the bearing measure-

ments obtained at time k = 3, 4.... In conclusion: When unknown ground objects are

tracked, they first must be geo - located. This delays the INS aiding action by at

least two time steps. Furthermore, the aircraft’s navigation state prior information

must be propagated ahead two time steps, without it being updated with bearing

measurements, while one exclusively relies on the INS. The measurement equation is

then re- linearized using the ground object’s prior information obtained during the

preliminary geo - location step, and the two time steps propagated ahead navigation

state prior information. From this point on, the INS aiding action and the ground

object’s geo - location is simultaneously performed during the ground object’s track-

ing interval.
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If the ground object’s elevation zp is known, say from a digital terrain data-base,

one can make do with one bearing measurement only:

x−p = xc + (zc − zp) cot(θc + ξm) (3.25)

3.2.4 Nondimentional Variables. The aircraft’s nominal altitude is h and

its nominal ground speed is v. Set

x → x
h
, z → z

h
, vx → vx

v
, vz → vz

v
, t → tv

h
, T → v

h
T, δfx → δfx

g
, δfz → δfz

g
, δω → h

v
δω.

Introduce the non-dimentional parameter (1
2

the ratio of the aircraft’s potential energy

to its kinetic energy):

a ≡ hg

v2

Then the aircraft’s non-dimentional navigation state error dynamics are specified by

the matrices
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A =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 a

0 0 0 0 0

0 0 0 0 0




, Γ =




0 0 0

0 0 0

a 0 0

0 a 0

0 0 1




(3.26)

The scenario considered is wings level flight in the vertical plane (x, z).

For example, for a MAV, v = 20 [ m
sec

], h = 40 [m], and g = 10 [ m
sec2

] ⇒ a = 1.

The geometry of the measurement scenario is characterized by the two non-dimensional

parameters

α1 = tan η1

α2 = tan η2

Consequently, the non-dimensional measurement interval

T = tan η1 + tan η2 (3.27)

Consider first a symmetric measurement scenario where η1 = η2 = η. Since x =

vt, xp = h tan η, using nondimensional variables, we obtain from the measurement

Equation (3.17)

y = δx + (tan η − t)δz − [1 + (tan η − t)2]δθ, (3.28)

0 ≤ t ≤ 2 tan η
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Figure 3.2: Simple Measurement Scenario
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i.e., the measurement matrix

C =
[
1, tan η − t, 0, 0, 2t tan η − t2 − 1

cos2 η

]
, (3.29)

the measurement

y ≡ xf

f
− xp − xc + zcθc

zc + (xc − xp)θc

(3.30)

and the measurement interval

T = h
v
(tan η1 + tan η2)

Note that, as is often the case in INS aiding, the measurement matrix C is time de-

pendent.

3.2.5 Observability. The observability Grammian [12] is

W (T ) =

∫ T

0

eAT tCT (t)C(t)eAtdt (3.31)

where T is the measurement interval.

We calculate

29



eAt =




1 0 t 0 1
2
at2

0 1 0 t 0

0 0 1 0 at

0 0 0 1 0

0 0 0 0 1




(3.32)

The geometry of the symmetric measurement arrangement is specified by the non-

dimensional parameter α ≡ tan η. Then the non-dimentional observation interval

T = 2α and the measurement matrix

C(t) =
[
1, α− t, 0, 0, −1− (α− t)2

]
(3.33)

We calculate

C(t)eAt =
[
1, α− t, t, (α− t)t, 1

2
at2 − 1− (α− t)2

]
(3.34)

and

eAT tCT (t)C(t)eAt =




1 α− t t (α− t)t f(t)

α− t (α− t)2 (α− t)t (α− t)2t (α− t)f(t)

t (α− t)t t2 (α− t)t2 tf(t)

(α− t)t (α− t)2t (α− t)t2 (α− t)2t2 (α− t)tf(t)

f(t) (α− t)f(t) tf(t) t(α− t)f(t) f 2(t)




(3.35)

where f(t) ≡ 1
2
at2 − 1 − (a − t)2. We integrate the time-dependent entries of the

matrix in Equation (3.35) and obtain the observability Grammian elements.

W1,1 = 2α, W1,2 = 0,W1,3 = 2α2,W1,4 = −2

3
α3,W1,5 =

4

3
aα3 − 2α− 2

3
α3, (3.36)
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W2,2 =
2

3
α3, W2,3 = −2

3
α3,W2,4 =

2

3
α4,W2,5 = 2α2 − 2α3 − 2

3
aα4, (3.37)

W3,3 =
8

3
α4,W3,4 = −4

3
α4,W3,5 = 2aα4 − 2

3
α4 − 2α2, (3.38)

W4,4 =
16

15
α5,W4,5 =

2

5
α5 − 6

5
aα5 +

2

3
α4, (3.39)

W5,5 = (
2

5
− 16

15
a +

8

5
a2)α5 +

4

3
(1− 2a)α3 + 2α (3.40)

Consider the MAV scenario where a = 1 and the measurement scenario shown

in the Figure 3.2, where α = 1

The observability Grammian is then

W =
2

15




15 0 15 −5 −10

0 5 −5 5 −5

15 −5 20 −10 −5

−5 5 −10 8 −1

−10 −5 −5 −1 12




(3.41)

The 5 × 5 real, symmetric, positive, semi-definite matrix W is not full rank: Rank

(W ) = 3. This implies:no observability.

Next, consider the alternative measurement geometry where the tracked ground fea-

ture P is at the origin (xp = 0). Then η = 0 so that α = 0 and

eAT tCT (t)C(t)eAt =




1 −t t −t2 f(t)

−t t2 −t2 t3 −f(t) · t
t −t2 t2 −t3 f(t) · t
−t2 t3 −t3 t4 −f(t) · t2

f(t) −f(t) · t f(t) · t −f(t) · t2 2f2(t)



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where f(t) = 1
2
(a− 1)t2 − 1

The non-dimensional measurement interval T = 2, and the elements of the observ-

ability Grammian are

W1,1 = 2, W1,2 = −2, W1,3 = 2, W1,4 = −8
3
, W1,5 = 2

3
(2a− 7),

W2,2 = 8
3
, W2,3 = −8

3
, W2,4 = 4, W2,5 = 2(3− a),

W3,3 = 8
3
, W3,4 = −4, W3,5 = 2(a− 3),

W4,4 = 32
5
, W4,5 = 8

15
(17− 6a),

W5,5 = 32
5
(1

2
a− 1)2 + 8

3
(2− a) + 2

As before, assume a = 1. The observability Grammian is

W =
2

15




15 −15 15 −20 −25

−15 20 −20 30 30

15 −20 20 −30 −30

−20 30 −30 48 44

−25 30 −30 44 47




(3.42)

The matrix W has two identical columns (columns 2 and 3) and two identical rows,

rows 2 and 3. This implies Rank (W ) = 3.

When both features are tracked, the observation matrix is the 2× 5 matrix.
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C(t) =


1 1− t 0 0 2t− t2 − 2

1 −t 0 0 −1− t2


 (3.43)

As before, for a = 1 we obtain

eAt =




1 0 t 0 1
2
t2

0 1 0 t 0

0 0 1 0 t

0 0 0 1 0

0 0 0 0 1




(3.44)

and we calculate

C(t)eAt =


1 1− t t t− t2 2t− 1

2
t2 − 2

1 −t t −t2 −1
2
t2 − 1


 (3.45)

and eAT tCT (t)C(t)eAt =




2 1− 2t 2t t− 2t2 2t− t3 − 3

1− 2t 1 + 2t2 − 2t t− 2t2 t− 2t2 + 2t3 t3 − 5
2
t2 + 5t− 2

2t t− 2t2 2t2 t2 − 2t3 2t2 − t3 − 3t

t− 2t2 t− 2t2 + 2t3 t2 − 2t3 2t4 − 2t3 + t2 t4 − 5
2
t3 + 5t2 − 2t

2t− t2 − 3 t3 − 5
2
t2 + 5t− 2 2t2 − t3 − 3t t4 − 5

2
t3 + 5t2 − 2t 1

2
t4 − 2t3 + 7t2 − 8t + 5




Integration yields the entries of the observability Grammian
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W1,1 = 30, W1,2 = −15, W1,3 = 30, W1,4 = −25, W1,5 = −35,

W2,2 = 25, W2,3 = −25, W2,4 = 35, W2,5 = 25,

W3,3 = 40, W3,4 = −40, W3,5 = −35,

W4,4 = 56, W4,5 = 43,

W5,5 = 59

The matrix W is full rank. Hence, we have observability.

Concerning a shortcut: A sufficient condition for observability is rank(W ) = 5, where

W = Wp1 + Wp2 and Wpi
is the observability Grammian when ground object i is

tracked, i = 1, 2; this is indeed the case.

3.2.6 Only the Elevation zp of the Tracked Ground Object is Known. The

augmented state’s error is (δx, δz, δvx, δvz, δθ, δxp)
T ∈ <6. Set xp → xp

h
.

The augmented system’s dynamics are specified by

Aa :=




A
... 0

· · · ... · · ·
0

... 0




6×6

, Γa :=




Γ

· · ·
0




6×3

(3.46)

Ca(t) := (C(t),−1) (3.47)
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where, recall, for wings level, constant altitude flight,

A =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 a

0 0 0 0 0

0 0 0 0 0




, Γ =




0 0 0

0 0 0

a 0 0

0 a 0

0 0 1




(3.48)

and

C(t) =
[
1, α− t, 0, 0, 2αt− t2 − 1− α2

]
(3.49)

We calculate

eAat :=




eAt ... 0

· · · ... · · ·
0

... 1


 (3.50)

Cae
Aat = (CeAt,−1) (3.51)

eAT tCT
a (t)Ca(t)e

Aat =


eAT tCT CeAt −eAT

CT

−CeAt 1


 (3.52)

and
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C(t)eAt = (1, α− t, t, αt− t2,
1

2
at2 − 1− α2 − t2 + 2αt) (3.53)

Let

wT ≡
∫ 2α

0

C(t)eAtdt = (2α, 0, 2α2,−2

3
α3,

2

3
(2a− 1)α3 − 2α) (3.54)

Wa =


 W −w

−wT 2α


 (3.55)

When a = 1,

wT = (2α, 0, 2α2,−2

3
α3,

2

3
α3 − 2α) (3.56)

and for α = 1,

wT = (2, 0, 2,−2

3
,−4

3
) (3.57)

When α = 0,

wT = (2,−2, 2,−8

3
,−10

3
) (3.58)
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Hence, when a = 1 and α = 1,

W1 =
2

15




15 0 15 −5 −10 −15

0 5 −5 5 −5 0

15 −5 20 −10 −5 −15

−5 5 −10 8 −1 5

−10 −5 −5 −1 12 10

−15 0 −15 5 10 30




(3.59)

When a = 1 and α = 0

W2 =
2

15




15 −15 15 −20 −25 −15

−15 20 −20 30 30 15

15 −20 20 −30 −30 −15

−20 30 −30 48 44 20

−25 30 −30 44 47 25

−15 15 −15 20 25 15




(3.60)

Rank(W1) = 4. and Rank (W2) = 3. Rank (W1 + W2) = 6.

3.2.7 Partial Observability. When the observability Grammian W is rank

deficient, that is,

rank(W ) = r < n ,

where n is the state space dimension, the system is not observable; we then refer

to the system as being partially observable. Strictly speaking, the aiding action of

bearing-only measurements does not percolate into all the state components. One is

thus interested in determining which states are (positively) impacted by the aiding

action. The answer is provided by the Singular Value Decomposition (SVD) of the

observability Garammian matrix W. The following holds:
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The n× n real symmetric positive semi-definite matrix W can be factored as

W = HK

where H is a n× r matrix and K is a r × n matrix. Furthermore, rank(H) = r and

rank(K) = r; in other words, this is a full rank factorization.

From the SVD we conclude that the measurement process allows us to estimate the

parameter θ ∈ <r:

θ = (HT H)−1HT

∫ T

0

eAT tCT (t)y(t)dt

The latter is related to the navigation state X as follows.

θ = KX0 (3.61)

The navigation information provided by the bearing measurements is encapsulated in

Equation (3.61). The complete initial state X0 cannot be calculated from the mea-

surement record y(t), 0 ≤ t ≤ T and in order to obtain a data driven estimate of the

full state vector, n− r additional independent measurements of the navigation state

are needed. In 2-D, and when the position of the ground object is known, the dimen-

sion of the state, n = 5. When one known ground feature is tracked, r = 3. This tells

us that two additional independent measurements of the navigation state are needed.

The availability of the passively measured baro altitude immediately comes to mind,

so that one additional independent measurement is needed for establishing the navi-

gation state. The latter could be the aircraft’s pitch angle θ, which is independently

provided by a vertical gyroscope.
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3.3 Flying in 3-D

Scenario: Nominal aircraft trajectory is wings level, constant altitude flight.

Figure 3.3: The Navigation and Body frames in 3 - D.

The information on the attitude errors is encapsulated in the vector δΨ. The

latter is not listing of the aircraft Euler angles errors. We first derive an expression

for δΨ as a function of the Euler angles’ errors.

In this section the relationship between the “attitude error” vector δΨ and the

Euler angles errors δθ, δψ, δφ is established.

First, note that the nominal navigation to body axes DCM is

Cn
b =




0 1 0

1 0 0

0 0 −1


 (3.62)
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Next, consider three relationships:

Figure 3.4: θ - Rotation.

3.3.1 θ - rotation. Since

yn = xb cos θ + zb sin θ

zn = xb sin θ − zb cos θ

xn = yb

⇒




xn

yn

zn


 =




0 1 0

cos θ 0 sin θ

sin θ 0 − cos θ







xb

yb

zb



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⇒

Cn
b (θ) =




0 1 0

cos θ 0 sin θ

sin θ 0 − cos θ




2

and for small angles δθ,

Cn
b =




0 1 0

1 0 δθ

δθ 0 −1




Figure 3.5: ψ - rotation.

3.3.2 ψ - rotation. Since

yn = xb cos ψ − yb sin ψ

xn = xb sin ψ + yb cos ψ

zn = −zb
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⇒




xn

yn

zn


 =




sin ψ cos ψ 0

cos ψ − sin ψ 0

0 0 −1







xb

yb

zb




⇒

Cn
b (ψ) =




sin ψ cos ψ 0

cos ψ − sin ψ 0

0 0 −1




2

and for small angles δψ,

Cn
b =




δψ 1 0

1 −δψ 0

0 0 −1




3.3.3 φ - rotation. Since

xn = xb cos φ− zb sin φ

zn = −zb cos φ− yb sin φ

yn = xb

⇒




xn

yn

zn


 =




0 cos φ − sin φ

1 0 0

0 − sin φ − cos φ







xb

yb

zb



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Figure 3.6: ψ - rotation.

⇒

Cn
b (φ) =




0 cos φ − sin φ

1 0 0

0 − sin φ − cos φ




and for small angles δφ,

Cn
b (φ) =




0 1 −δφ

1 0 0

0 −δφ −1




where from we finally conclude

Cn
b (δψ, δθ, δφ) =




δψ 1 −δφ

1 −δψ δθ

0 −δφ −1




Since
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Cn
b (0, 0, 0) =




0 1 0

1 0 0

0 0 −1




⇒

δCn
b =




δψ 0 −δφ

0 −δψ δθ

0 −δφ 0




Now,

δΨ = −δCn
b · Cb

n

=




δψ 0 −δφ

0 −δψ δθ

0 −δφ 0







0 1 0

1 0 0

0 0 −1




⇒

δΨ =




0 −δψ −δφ

δψ 0 δθ

δφ −δθ 0




where from we calculate the “attitude error” vector

δΨ =




−δθ

−δφ

−δψ



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Hence, the navigation state’s error dynamics are

δ

δt




δxn

δyn

δzn

δVxn

δVyn

δVzn

−δθ

−δφ

δψ




=




0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −g a

0 0 0 0 0 0 g 0 0

0 0 0 0 0 0 −a 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0







δxn

δyn

δzn

δVxn

δVyn

δVzn

−δθ

−δφ

δψ




+




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 0 0 0 1







δf b
x

δf b
y

δf b
z

δωb
x

δωb
y

δωb
z




(3.63)

3.4 Measurement Equation

From the geometry of the measurement arrangement, the “Main Equation” is

obtained:


 x

y


 =


 xp

yp


− (zp − z)

1

(0, 0, 1)Cn
b




xf

yf

f





1 0 0

0 1 0


 Cn

b




xf

yf

f


 (3.64)

For small angles:

Cn
b =




ψ 1 −φ

1 −ψ θ

θ −φ −1


 (3.65)
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⇒


 xp

yp


 =


 x

y


 + (zp − z)

1

xfθ − yfφ− f


 xfψ − fφ + yf

fθ − yfφ + xf


 (3.66)

In the special case of 2-D flight, we have yf = 0 ⇒

yp − y =
zp − z

xfθ − f
(fθ + xf ) (3.67)

i.e.,

yp − y

z − zp

=
xfθ + fθ

f − xfθ
(3.68)

Setting f
xf

= tan ζ yields

yp − y

z − zp

=
1 + tanζ · θ
tan ζ − θ

=
1 + tanζ tan θ

tan ζ − tan θ
and for θ small

=
1

tan(ζ − θ)

⇒

yp−y

z−zp
= cot(ζ − θ),

as before; note the polarity of θ.

In the general 3-D case we have
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xp − x = (z − zp)
xfψ − fφ + yf

f + yfφ− xfθ
(3.69)

yp − y = (z − zp)
fθ − yfψ + xf

f + yfφ− xfθ
(3.70)

⇒

xp − x = (z − zp)

xf

f
ψ − φ +

yf

f

1 +
yf

f
φ− xf

f
θ

(3.71)

yp − y = (z − zp)
θ − yf

f
ψ +

xf

f

1 +
yf

f
φ− xf

f
θ

(3.72)

Set

xp := xp

f
, yp := yp

f

⇒

xp − x = (z − zp)
xfψ − φ + yf

1 + yfφ− xfθ
(3.73)

yp − y = (z − zp)
θ − yfψ + xf

1 + yfφ− xfθ
(3.74)

The small angles approximation yields
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xp − x = (z − zp)(xfψ − φ + yf )(1− yfφ + xfθ)

= (z − zp)(xfψ − φ + yf − y2
fφ + xfyfθ)

and

yp − y = (z − zp)(θ − yfψ + xf )(1− yfφ + xfθ)

= (z − zp)(θ − yfψ + xf + x2
fθ − xfyfφ)

⇒

xp − x = (z − zp)[yf + xfψ + xfyfθ − (1 + y2
f )φ]

yp − y = (z − zp)[xf − yfψ + (1 + x2
f )θ − xfyfφ]

Thus

xp − x + (zp − z)yf + zpxfψ + zP xfyfθ − zp(1 + y2
f )φ = z[xfψ + xfyfθ − (1 + y2

f )φ]

yp−y+(zp−z)xf +zpyfψ+zP (1+x2
fθ)−zpxfyfφ = z[−yfψ+(1+x2

f )θ−xfyfφ]

3.4.1 Small Perturbations.

x = xc − δx, y = yc − δy, z = zc − δz, θ = θc − δθ, ψ = ψc − δψ, φ = φc − δφ
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Assume the position xp, yp, zp of the ground feature is known.

xp−xc +δx+(zp−zc)yf +δzyf +zpxfψc−zpxfyfδθ−zp(1+y2
f )φc +zp(1+y2

f )δφ

= zc[xfψc − xfδψ + xfyfθc − xfyfδθ − (1 + y2
f )φc + (1 + y2

f )δφ]− δz[xfψc + xfyfθc −
(1 + y2

f )φc]

yp − yc + δy + (zp − zc)xf + δzxf − zpyfψc + zpyfδψ + zp(1 + x2
f )θc − zpxfyfφc +

zpxfyfδφ− zp(1 + x2
f )δθ

= zc[−yfψc + yfδψ + (1 + x2
f )θc − (1 + x2

f )δθ − xfyfφc + xfyfδφ] − δz[yfψc + (1 +

x2
f )θc − xfyfφc]

⇒

xp − xc + (zp − zc)yf + zpxfψc + zpxfyfθc − zp(1 + y2
f )φc − zcxfψc − zcxfyfθc +

zc(1 + y2
f )φc

= −δx − [xfψc + xfyfθc − (1 + y2
f )φc + yf ]δz + [zpxfyf − zcxfyf ]δθ + (zc − zp)(1 +

y2
f )δφ + (zpxf − zcxf )δψ
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yp− yc +(zp− zc)xf − zpyfψc + zp(1+x2
f )θc− zpxfyfφc + zcyfψc− zc(1+x2

f )θc +

zcxfyfφc

= −δy− [(1 + x2
f )θc− yfψc− xfyfφc− xf ]δz + (1 + x2

f )(zp− zc)δθ + xfyf (zc− zp)δφ +

yf (zc − zp)δψ

⇒

xp−xc +(zc−zp)[(1+y2
f )φc−xfyfθc−xfψc−yf ] = −δx− [yf +xfψc +xfyfθc−

(1 + y2
f )φc]δz + (zp − zc)[xfyfδθ + xfδψ − (1 + y2

f )δφ]

yp − yc + (zc − zp)[yfψc − xfyfψc − (1 + x2
f )θc − xf ] = −δy + [xf + yfψc + xfyfφc −

(1 + x2
f )θc]δz + (zp − zc)[(1 + x2

f )δθ − xfyfδφ− yfδψ]

On the RHS of the above two equations, set ψc = θc = φc = 0 (the nominal trajectory

is wings level flight).

⇒

xp−xc + (zc− zp)[(1 + y2
f )φc−xfyfθc−xfψc− yf ] = −δx− yfδz + (zp− zc)[xfyfδθ−

(1 + y2
f )δφ + xfδψ]

yp − yc + (zc − zp)[xf + (1 + x2
f )θc − xfyfθc − yfψc] = −δy + xfδz + (zp − zc)[(1 +

x2
f )δθ − xfyfδφ− yfδψ]
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Also, on the RHS on the above equations, set zc = h.

xp−xc+(zc−zp)[(1+y2
f )φc−xfyfθc−xfψc−yf ] = −δx−yfδz+(zp−h)[xfyfδθ−

(1 + y2
f )δφ + xfδψ]

yp−yc +(zc−zp)[xf +(1+x2
f )θc−xfyfθc−yfψc] = −δy+xfδz +(zp−h)[(1+x2

f )δθ−
xfyfδφ− yfδψ]

Finally, without loss of generality, assume zp = 0

xp − xc + zc[(1 + y2
f )φc − xfyfθc − xfψc − yf ] = −δx− yfδz − h[xfyfδθ − (1 +

y2
f )δφ + xfδψ]

yp−yc+zc[xf +(1+x2
f )θc−xfyfθc−yfψc] = −δy+xfδz−h[(1+x2

f )δθ−xfyfδφ−yfδψ]

Non-dimensionalize by dividing by h:

xp → xp

h
, xc → xc

h
,zc → zc

h
, δx → δx

h
,δy → δy

h
, δz → δz

h
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xp − xc + zc[yf + xfyfθc + xfψc − (1 + y2
f )φc] = −δx− yfδz − xfyfδθ

+(1 + y2
f )δφ− xfδψ

yp − yc + zc[xf + (1 + x2
f )θc − xfyfθc − yfψc] = −δy + xfδz − (1 + x2

f )δθ

+xfyfδφ + yfδψ

⇒

In 3-D and wings level flight the measurements matrix

C(t) =


−1 0 −yf 0 0 0 −xfyf 1 + y2

f −xf

0 −1 xf 0 0 0 −(1 + x2
f ) xfyf yf




Note:

xf = xf (t)

In the special 2-D Case

C(t) =
[
−1 0 −xf 0 0 1 + x2

f

]
(3.75)

as expected.

The solution method for finding the point of “Intersection” of Two Directed

Straight Lines in R3 is explained in detail in Appendix A.
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IV. Results and Analysis

4.1 Development of Kalman Filtering for Flight Scenarios

State representation for flight scenarios was obtained in Chapter 3. Here we

need to state discrete Kalman Filtering equations.

Sate:

x(k) = Φ(k, k − 1)x(k − 1) + B(k − 1)u(k − 1) + G(w(k − 1)) (4.1)

Measurement:

Z(k) = H(k)x(k) + V (k) (4.2)

Propagation:

x̂−(k) = Φ(k, k − 1)x̂+(k − 1) (4.3)

P−(k) = Φ(k, k − 1)P+(k − 1)Φ(k, k − 1)T + GQGT (4.4)

Update:

K(k) = P−(k)HT (k)[H(k)P−(k)HT (k) + R(k)]−1 (4.5)

x̂+(k) = x̂−(k) + K(k)[Z(k)−H(k)x̂−(k)] (4.6)

P+(k) = P−(k)−K(k)H(k)P−(k) (4.7)

53



4.2 Scenario 1

Here in this case we have almost perfect level flight in 3 - D. Euler angles

are assumed negligible. Accelerometers of the INS have bias 0.01m/s2, initial state

estimate and covariance are set as random, and measurement and also position of

the UAV calculated based on measurement assumed perfect. Here we have 1 m/s2

constant acceleration in y direction (North). Flight level is 500 meters. 16 objects

are generated randomly. Ten measurements are obtained. In this scenario we tried

algorithm for one object per measurement. Positions of ground objects are assumed

known. Error plots from Kalman filter are shown below, and all other plots are placed

in Appendix B.
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Figure 4.1: Scenario 1. Kalman Filter Position Errors. Estimated - true. Red is
+− standard deviation.
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Figure 4.2: Scenario 1. Kalman Filter Velocity Errors. Estimated - true. Red is
+− standard deviation.

Table 4.1: Standard deviation results obtained from
Kalman filtering of scenario 1.

Standard Deviation Value
σx 28.3415 (m)
σy 26.7456 (m)
σz 24.8587 (m)
σvx 5.8403 (m/s)
σvy 5.5674 (m/s)
σvz 1.1592 (m/s)
σθ 0.1031 (rad)
σφ 0.1916 (rad)
σψ 0.9892 (rad)
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4.3 Scenario 2

Here in this scenario we have almost same conditions. Euler angles are assumed

negligible. Accelerometers of the INS have bias 0.01m/s2, initial state estimate and co-

variance are set as random, and measurement and also position of the UAV calculated

based on measurement assumed perfect. Here we have 1 m/s2 constant acceleration

in y direction (North). Flight level is 500 meters. 16 objects are generated randomly.

Ten measurements are obtained. In this scenario we tried algorithm for two object

per measurement. Positions of ground objects are assumed known. Error plots from

Kalman filter are shown below, and all other plots are placed in Appendix C.
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Figure 4.3: Scenario 2. Kalman Filter Position Errors. Estimated - true. Red is
+− standard deviation.
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Figure 4.4: Scenario 2. Kalman Filter Velocity Errors. Estimated - true. Red is
+− standard deviation.

Table 4.2: Standard deviation results obtained from
Kalman filtering of scenario 2.

Standard Deviation Value
σx 26.0850 (m)
σy 17.5229 (m)
σz 23.7029 (m)
σvx 5.6905 (m/s)
σvy 4.9955 (m/s)
σvz 1.1419 (m/s)
σθ 0.1005 (rad)
σφ 0.1845 (rad)
σψ 0.9216 (rad)
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4.4 Scenario 3

Same conditions applied in this scenario for three ground objects. Euler angles

are assumed negligible. Accelerometers of the INS have bias 0.01m/s2, initial state

estimate and covariance are set as random, and measurement and also position of

the UAV calculated based on measurement assumed perfect. Here we have 1 m/s2

constant acceleration in y direction (North). Flight level is 500 meters. 16 objects

are generated randomly. Ten measurements are obtained. In this scenario we tried

algorithm for three object per measurement. Positions of ground objects are assumed

known. Error plots from Kalman filter are shown below, and all other plots are placed

in Appendix D.
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Figure 4.5: Scenario 3. Kalman Filter Position Errors. Estimated - true. Red is
+− standard deviation.
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Figure 4.6: Scenario 3. Kalman Filter Velocity Errors. Estimated - true. Red is
+− standard deviation.

Table 4.3: Standard deviation results obtained from
Kalman filtering of scenario 3.

Standard Deviation Value
σx 21.7347 (m)
σy 17.2366 (m)
σz 18.4061 (m)
σvx 5.3178 (m/s)
σvy 4.9784 (m/s)
σvz 1.0640 (m/s)
σθ 0.1004 (rad)
σφ 0.1841 (rad)
σψ 0.9264 (rad)
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4.5 Scenario 4

Here in this scenario we repeated conditions for two objects like in scenario

2. Positions of object reflection on the camera scene were obtained as in previous

scenarios. Then this information was used as input for the methodology explained

in Appendix A. Measured object positions are very different at third dimension z.

This could be because of non-dimentialisation used in our methodology. We used

input from barometric altimeter to correct this error. Firstly we ran Kalman filter

for perfect measurement. Then we replaced perfect measurements with measurement

of our algorithm, and we ran Kalman filter again to compare results. Plots for both

runs are shown below.
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Figure 4.7: Scenario 4. Kalman Filter Results from Perfect Measurement. Kalman
Filter Position Errors. Estimated - true. Red is +− standard deviation.
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Figure 4.8: Scenario 4. Kalman Filter Results from Perfect Measurement. Kalman
Filter Velocity Errors. Estimated - true. Red is +− standard deviation.

Table 4.4: Standard deviation results obtained from
Kalman filtering of scenario 4.

Standard Deviation Value
σx 25.3797 (m)
σy 17.5103 (m)
σz 24.0239 (m)
σvx 5.6623 (m/s)
σvy 4.9949 (m/s)
σvz 1.1304 (m/s)
σθ 0.1005 (rad)
σφ 0.1892 (rad)
σψ 0.9849 (rad)
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Table 4.5: Calculated object positions for Scenario4.

x -0.0018 -0.0024 -0.0015 -0.0010 -0.0271 -0.0442 0.0246 0.1971 0.2699
y 125 325 625.02 1025.1 1525.2 2125.6 2826.4 3628.6 4533.1
z 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006 0.0010

Table 4.6: Barometric altimeter added object posi-
tions for Scenario4.

x -0.0018 -0.0024 -0.0015 -0.0010 -0.0271 -0.0442 0.0246 0.1971 0.2699
y 125 325 625.02 1025.1 1525.2 2125.6 2826.4 3628.6 4533.1
z -500 -500 -500 -499.9 -499.9 -499.8 -499.6 -499.4 -499

Table 4.7: True object positions for Scenario4.

x -0.1388 -0.1360 -0.0262 -0.0083 -0.1158 -0.0988 0.0332 0.1551 0.1355
y 213.5 330.3 752.1 1315.7 2063.0 3142.3 4376.4 6006.0 8105.4
z -493.5 -490.4 -491.2 -494.3 -494.1 -499.5 -499.2 -490.1 -497.5
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Figure 4.9: Scenario 4. Kalman Filter Position Errors after Least Square Method
Applied. Estimated - true. Red is +− standard deviation.
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Figure 4.10: Scenario 4. Kalman Filter Velocity Errors after Least Square Method
Applied. Estimated - true. Red is +− standard deviation.

Table 4.8: Scenario 4. Standard deviation results
obtained from Kalman filtering after Least Square
Method Applied.

Standard Deviation Value
σx 24.92 (m)
σy 17.488 (m)
σz 24.668 (m)
σvx 5.6601 (m/s)
σvy 4.9942 (m/s)
σvz 1.1479 (m/s)
σθ 0.10047 (rad)
σφ 0.19122 (rad)
σψ 0.98697 (rad)
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Table 4.9: Standard deviation results obtained from
Kalman filtering of Scenario1, Scenario2, and Sce-
nario3.

Std Scenario1 Scenario2 Scenario3
σx 28.3415 (m) 26.0850 (m) 21.7347 (m)
σy 26.7456 (m) 17.5229 (m) 17.2366 (m)
σz 24.8587 (m) 23.7029 (m) 18.4061 (m)
σvx 5.8403 (m/s) 5.6905 (m/s) 5.3178 (m/s)
σvy 5.5674 (m/s) 4.9955 (m/s) 4.9784 (m/s)
σvz 1.1592 (m/s) 1.1419 (m/s) 1.0640 (m/s)
σθ 0.1031 (rad) 0.1005 (rad) 0.1004 (rad)
σφ 0.1916 (rad) 0.1845 (rad) 0.1841 (rad)
σψ 0.9892 (rad) 0.9216 (rad) 0.9264 (rad)

4.6 Analysis

We need to compare plot results and statistics before state our conclusion. Look

at the table that shows statistical results for first three scenarios above. It is obvious

that we have smaller standard deviations when we have more tracked objects. If

we look at the error plots for scenarios, we can see that the worst one is the first

scenario where we have one object tracked, and third scenario looks better than first

and second. Results for second scenario are better than first. However, comparing

plots and statistics we expected to see impact of using two or more tracked object to

prove the claim very clearly. Even that second scenario has better results in comparing

with first one, difference between them is not significant. There were unexpected error

grows in z direction. The theory explained in Chapter 3 gives us measurement update

for x and y positions, and as investigated in scenario 4 we need to have barometric

altimeter aid. Results could be improved by tuning filter more accurately, and that

requires further study on scenarios and code.
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V. Conclusions

5.1 Conclusion

In the first step of this study the simplest 2-D scenario of INS aiding using bearing

measurements of stationary ground features is investigated. The measurements are

taken over time and the attendant observability problem is formulated and analyzed.

The degree of INS aiding action is determined by the degree of observability provided

by the measurement arrangement. The latter is strongly influenced by the nature of

the available measurements - in our case, bearing measurements of stationary ground

objects - the trajectory of the aircraft, and the length of the measurement interval.

Whereas observability guarantees that all the navigation state’s components are pos-

itively affected by the external measurements, we are also interested in the possibility

of partial observability where not all the navigation state components’ estimates are

impacted by the external measurements. It is shown that when one known ground

object is tracked, the observability Grammian is rank deficient and thus full INS aid-

ing action is not available. However, if baro altitude is available and an additional

vertical gyroscope is used to provide an independent measurement of the aircraft’s

pitch angle, a data driven estimate of the complete navigation state can be obtained.

If two ground features are simultaneously tracked the observability Grammian is full

rank and all the components of the navigation state vector are positively impacted

by the optical measurements. The simulation we applied here do not fully validate

the theory and there full further work is needed.

In the second step of this study simple scenario for 3-D flight and INS aiding

using bearing measurements of stationary ground features is investigated. Ground

objects are generated and measurements are obtained using those ground objects. In

the scenarios, one ground object tracking, two ground objects tracking, and three

ground objects tracking investigated. Having more ground objects provided some

better results, and also smaller standard deviations. In theory and in application we

note that each measured position of the aircraft, which also refers to an image taken

by the camera, is related to two ground object such that are common in two neighbor
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images. In situation to have less than two matched ground objects/features INS prop-

agation will continue, however measurement propagation chain, showed in Chapter

four Scenario 2, will be crashed. Three ground objects are necessary to initialize the

process only. After that point, first two good measurements would be set as new ini-

tial condition, and that will be the second start point for measurement propagation.

Measurements iterations after that can be assumed as good relative to that second

start point. Some other measurement input or method would be essential to obtain

geometric/geodetic relation between last good measurement of first chain and first

good measurement of last chain.

5.2 Next Iterations

Here we have some recommendations for further studies.

• Euler angles are assumed small in this study. One can extend the study using

second terms of Taylor series of sine and cosine. After that some nonlinear methods

or extended linearisation would be essential.

• This study was designed to be a part of control and navigation system, that

consists of image processing block upfront, Kalman Filter for navigation solution,

LQG flight controller, communication system, weapon systems and other subsystems.

Those who work on manual target selection might use algorithm in this study to ob-

tain geo-location of selected target. Then it is easy to obtain relative distance to the

selected target, so one can consider to give inputs to approach closer to the selected

target or fly away from it. It could be done either manually or a simple algorithm

that has those two options could be adopted to the LQG controller.

• Those, who do research about flight patterns to observe possible enemies, to

protect moving friendly troopers, could extend their research for patterns also to fly
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over gaps where measurement propagation chains are broken, explained at the end

of conclusions, to obtain new and useful measurement information. That would be

useful to connect separate chains.
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Appendix A. The Point of “Intersection” of Two Directed Straight

Lines in R3

The two straight lines are

l1 = {P |P = P1 + tV1, t ≥ 0}

l2 = {P |P = P2 + tV2, t ≥ 0}

The lines’ “points of origin” are P1 and P2, respectively. V1 and V2 are unit

vectors in R3.

Lemma1 The distance d(P, l) from a specified point P to the straight line

l1 = {P |P = P1 + tV1, t ≥ 0}

is

d =





||P − P1||2 if V T
1 (P − P1) 6 0

√
||P − P1||22 − (P − P1)T V V T (P − P1) if V T

1 (P − P1) ≥ 0





Proof: Solve the optimization problem

mintε<1
t
(P1 − P + tV )T (P1 − P + tV )

We obtain

t∗ = V T (P − P1) ¤

wherupon we calculate d.

The point of “intersection” P of two straight lines in <3 is such that:

d2(P, l1) + d2(P, l2) → min;
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We have evoked the “least squares” principle.

Thus, the optimization problem is posed.

minPε<3 [d2(P, l1) + d2(P, l2)]

From Lemma 1 we conclude:

minPε<3 [(P − P1)
T (P − P1)− (P − P1)

T V1V
T
1 (P − P1) + (P − P2)

T (P − P2)− (P −
P2)

T V2V
T
2 (P − P2)]

⇒

P − P1 − V1V
T
1 (P − P1) + P − P2 − V2V

T
2 (P − P2) = 0

⇒

P ∗ =
1

2
[I3 − 1

2
(V1V

T
1 + V2V

T
2 )]−1 · [P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2) (A.1)

providet that:

V T
1 [I − frac12(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

1 P1 (A.2)

and

V T
2 [I − frac12(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

2 P2 (A.3)

The geometry is illustrated in Figure A.1:

69



Figure A.1: Crossing lines

From Lemma 1 we know

t∗1 = V T
1 (P ∗ − P1) and t∗2 = V T

2 (P ∗ − P2)

wherefrom we calculate

F1 = P1 + V1V
T
1 (P ∗ − P1) and F2 = P2 + V2V

T
2 (P ∗ − P2)

Next calculate

X ≡ 1
2
(F1 + F2)

X =
1

2
[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2) + (V1V

T
1 + V2V

T
2 )P ∗] (A.4)

From eq (A.1) we obtain

P1 + P2 − (V1V
T
1 P1 + V2V

T
2 P2) = 2[I − frac12(V1V

T
1 + V2V

T
2 )]P ∗ (A.5)

Inserting eq (A.5) into eq (A.4) yields
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X = 1
2
[2I − (V1V

T
1 + V2V

T
2 ) + (V1V

T
1 + V2V

T
2 )]P ∗

⇒

X = P ∗

We conclude:

The point of “intersection” of the straight lines l1 and l2 is the midpoint of a segment

F1F2 where F1 ε l1, F2 ε l2, and the segment F1F2 is otrhogonal to both l1 and l2.

Finally, F1F2 = minF1εl1,F2εl2d(F1F2).

This characterization of the “intersection” P ∗ of the staright lines l1 and l2 yields the

following alternative algorithm for the calculation of P ∗.

F1 = P1 + V1t1, F2 = P2 + V2t2

⇒

F1 − F2 = P1 − P2 + V1t1 − V2t2

Now V T
1 (F1 − F2) = 0 and V T

2 (F1 − F2) = 0

and this yields the two equations in the unknown t1 and t2

V T
1 (P1 − P2 + V1t1 − V2t2) = 0

V T
2 (P1 − P2 + V1t1 − V2t2) = 0

⇒


 1 −V T

1 V2

V T
2 V1 −1





 t1

t2


 =


V T

1 (P2 − P1)

V T
1 (P2 − P1)



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⇒


 t1

t2


 = 1

(V T
1 V2)2−1


 1 −V T

1 V2

V T
2 V1 −1





V T

1 (P2 − P1)

V T
1 (P2 − P1)




⇒

t∗1 = 1
(V T

1 V2)2−1
V T

1 [I − V2V
T
2 ](P1 − P2)

t∗2 = 1
(V T

1 V2)2−1
V T

2 [I − V1V
T
1 ](P2 − P1)

⇒

F1 = P1 + 1
(V T

1 V2)2−1
V1V

T
1 [I − V2V

T
2 ](P1 − P2)

F2 = P2 + 1
(V T

1 V2)2−1
V2V

T
2 [I − V1V

T
1 ](P2 − P1)

⇒

P ∗ = 1
2
{P1 + P2 + 1

(V T
1 V2)2−1

[V1V
T
1 − V2V

T
2 + V2V

T
2 V1V

T
1 − V1V

T
1 V2V

T
2 ](P1 − P2)}

P ∗ = 1
2
{P1 + P2 + 1

(V T
1 V2)2−1

[V1V
T
1 − V2V

T
2 + V1V

T
2 (V2V

T
1 − V1V

T
2 )](P1 − P2)}

A 3× 3 matrix inversion is not required.

If

V T
1 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

1 P1

V T
2 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

2 P2

then
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t∗1 = t∗2 = 0

and

P ∗ = 1
2
(P1 + P2)
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The situation is:

Figure A.2: P∗ is the point in the middle of the shortest distance between l1 and
l2

If

V T
1 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

1 P1

but

V T
2 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

2 P2
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The situation is:

Figure A.3:

Using Lemma 1 we obtain

t∗1 = V T
1 (P2 − P1) ⇒ F1 = P1 + V1V

T
1 (P2 − P1)

⇒

P ∗ = 1
2
[P1 + P2 − V1V

T
1 (P1 − P2)]

In summary, the following holds

Theorem 2 The point of “intersection” of the straight lines l1 = {P |P =

P1 + tV1, t ≥ 0} and l2 = {P |P = P2 + tV2, t ≥ 0} is calculated as follows.

If the problem parameters satisfy

V T
1 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

1 P1

and
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V T
2 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

2 P2

The point of “intersection” of the straight lines l1 and l2 is

P ∗ = 1
2
[I − 1

2
(V1V

T
1 + V2V

T
2 )]−1 · [P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)]

An alternative formula is:

P ∗ = 1
2
{P1 + P2 + 1

(V T
1 V2)2−1

[V1V
T
1 − V2V

T
2 + V1V

T
2 (V2V

T
1 − V1V

T
2 )](P1 − P2)}

If the parameters are such that:

V T
1 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

1 P1

and

V T
2 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

2 P2

then

P ∗ = 1
2
(P1 + P2)

If the problem parameters are such that:

V T
1 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

1 P1

and

V T
2 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

2 P2

Then

P ∗ = 1
2
[P1 + P2 − V1V

T
1 (P1 − P2)]

If the problem parameters are such that:

V T
1 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≤ 2V T

1 P1

and
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V T
2 [I − 1

2
(V1V

T
1 + V2V

T
2 )]−1[P1 + P2 − (V1V

T
1 P1 + V2V

T
2 P2)] ≥ 2V T

2 P2

then

P ∗ = 1
2
[P1 + P2 − V2V

T
2 (P1 − P2)] ¤
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Appendix B. Plots for Scenario 1
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Figure B.1: Scenario 1. Simulated positions of the UAV and ground objects.
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Figure B.2: Scenario 1. True vs calculated position.
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Figure B.3: Scenario 1. True vs calculated velocity.

79



0 20 40 60 80 100
−0.5

0

0.5
True vs. Calculated Acceleration Estimates

a x (
m

/s
2 )

0 20 40 60 80 100
0.5

1

1.5

a y (
m

/s
2 )

0 20 40 60 80 100
−0.5

0

0.5

a z (
m

/s
2 )

Time (sec)

Figure B.4: Scenario 1. True vs calculated acceleration.
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Figure B.5: Scenario 1. Position errors.
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Figure B.6: Scenario 1. Velocity errors.
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Figure B.7: Scenario 1. Acceleration errors.
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Figure B.8: Scenario 1. Kalman Filter True vs Estimated Position Parameters.
Red is +− standart deviation. Blue - true, green -estimated.

0 20 40 60 80 100
−100

0

100

200
True vs. Estimated Velocity Params

V
x 

(m
/s

)

0 20 40 60 80 100
−200

−100

0

100

V
y 

(m
/s

)

0 20 40 60 80 100
−10

0

10

20

V
z 

(m
/s

)

Time (sec)

Figure B.9: Scenario 1. Kalman Filter True vs estimated Velocity Parameters. Red
is +− standart deviation. Blue - true, green -estimated.
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Figure B.10: Scenario 1. Kalman Filter Position Errorts. Estimated - true. Red is
+− standart deviation.
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Figure B.11: Scenario 1. Kalman Filter Velocity Errorts. Estimated - true. Red is
+− standart deviation.
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Appendix C. Plots for Scenario 2
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Figure C.1: Scenario 2. Simulated positions of the UAV and ground objects.
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Figure C.2: Scenario 2. True vs calculated position.
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Figure C.3: Scenario 2. True vs calculated velocity.
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Figure C.4: Scenario 2. True vs calculated acceleration.
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Figure C.5: Scenario 2. Position errors.
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Figure C.6: Scenario 2. Velocity errors.
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Figure C.7: Scenario 2. Acceleration errors.
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Figure C.8: Scenario 2. Kalman Filter True vs Estimated Position Parameters.
Red is +− standart deviation. Blue - true, green -estimated.
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Figure C.9: Scenario 2. Kalman Filter True vs estimated Velocity Parameters. Red
is +− standart deviation. Blue - true, green -estimated.
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Figure C.10: Scenario 2. Kalman Filter Position Errorts. Estimated - true. Red is
+− standart deviation.
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Figure C.11: Scenario 2. Kalman Filter Velocity Errorts. Estimated - true. Red is
+− standart deviation.
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Appendix D. Plots for Scenario 3
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Figure D.1: Scenario 3. Simulated positions of the UAV and ground objects.
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Figure D.2: Scenario 3. True vs calculated position.
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Figure D.3: Scenario 3. True vs calculated velocity.
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Figure D.4: Scenario 3. True vs calculated acceleration.

0 20 40 60 80 100
−40

−20

0

20
Position Errors (Calc − True)

X
er

r (
m

)

0 20 40 60 80 100
−10

−5

0

5

Y
er

r (
m

)

0 20 40 60 80 100
−10

0

10

20

Z
er

r (
m

)

Time (sec)

Figure D.5: Scenario 3. Position errors.
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Figure D.6: Scenario 3. Velocity errors.
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Figure D.7: Scenario 3. Acceleration errors.
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Figure D.8: Scenario 3. Kalman Filter True vs Estimated Position Parameters.
Red is +− standart deviation. Blue - true, green -estimated.

0 20 40 60 80 100
−100

0

100

200
True vs. Estimated Velocity Params

V
x 

(m
/s

)

0 20 40 60 80 100
−200

0

200

V
y 

(m
/s

)

0 20 40 60 80 100
−10

0

10

20

V
z 

(m
/s

)

Time (sec)

Figure D.9: Scenario 3. Kalman Filter True vs estimated Velocity Parameters. Red
is +− standart deviation. Blue - true, green -estimated.
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Figure D.10: Scenario 3. Kalman Filter Position Errorts. Estimated - true. Red is
+− standart deviation.
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Figure D.11: Scenario 3. Kalman Filter Velocity Errorts. Estimated - true. Red is
+− standart deviation.
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Appendix E. Plots for Scenario 4
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Figure E.1: Scenario 4. Simulated positions of the UAV and ground objects.

E.0.1 True and Calculated Trajectory and Velocity Plots.
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Figure E.2: Scenario 4. True vs calculated position.
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Figure E.3: Scenario 4. True vs calculated velocity.
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Figure E.4: Scenario 4. True vs calculated acceleration.
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Figure E.5: Scenario 4. Position errors.
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Figure E.6: Scenario 4. Velocity errors.
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Figure E.7: Scenario 4. Acceleration errors.
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Figure E.8: Scenario 4. Kalman Filter True vs Estimated Position Parameters.
Red is +− standart deviation. Blue - true, green -estimated.
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Figure E.9: Scenario 4. Kalman Filter True vs estimated Velocity Parameters. Red
is +− standart deviation. Blue - true, green -estimated.

E.0.2 Kalman Filter Results from Perfect Measurement.
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Figure E.10: Scenario 4. Kalman Filter Position Errorts. Estimated - true. Red is
+− standart deviation.
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Figure E.11: Scenario 4. Kalman Filter Velocity Errorts. Estimated - true. Red is
+− standart deviation.
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Figure E.12: Scenario 4. Kalman Filter True vs Estimated Position Parameters
after Least Square Method Applied. Red is +− standart deviation. Blue - true,
green -estimated.

E.0.3 Kalman Filter Results after Least Square Method Applied for Object Geo-

Location.
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Figure E.13: Scenario 4. Kalman Filter True vs estimated Velocity Parameters
after Least Square Method Applied. Red is +− standart deviation. Blue - true,
green -estimated.
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Figure E.14: Scenario 4. Kalman Filter Position Errors after Least Square Method
Applied. Estimated - true. Red is +− standart deviation.
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Figure E.15: Scenario 4. Kalman Filter Velocity Errors after Least Square Method
Applied. Estimated - true. Red is +− standart deviation.
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